Vicerrectorado de innovación y convergencia.
Los alumnos manifiestan su preocupación por el proceso de adaptación.
Investigación y evaluación de la actividad investigadora
Actividad investigadora. Plazo solicitud Resolución de 12 de noviembre de 2008, de la Secretaría de Estado de Universidades, por la que se fija el procedimiento y plazo de presentación de solicitudes de evaluación de la actividad investigadora a la Comisión Nacional Evaluadora de la Actividad Investigadora.
Investigación y evaluación de la actividad investigadora
Actividad investigadora. Plazo solicitud Resolución de 12 de noviembre de 2008, de la Secretaría de Estado de Universidades, por la que se fija el procedimiento y plazo de presentación de solicitudes de evaluación de la actividad investigadora a la Comisión Nacional Evaluadora de la Actividad Investigadora.
LingPipe is a suite of Java libraries for the linguistic analysis of human language.
Feature Overview
LingPipe’s information extraction and data mining tools:
track mentions of entities (e.g. people or proteins);
link entity mentions to database entries;
uncover relations between entities and actions;
classify text passages by language, character encoding, genre, topic, or sentiment;
correct spelling with respect to a text collection;
cluster documents by implicit topic and discover significant trends over time; and
provide part-of-speech tagging and phrase chunking.
Architecture
LingPipe’s architecture is designed to be efficient, scalable, reusable, and robust. Highlights include:
Java API with source code and unit tests;
multi-lingual, multi-domain, multi-genre models;
training with new data for new tasks;
n-best output with statistical confidence estimates;
online training (learn-a-little, tag-a-little);
thread-safe models and decoders for concurrent-read exclusive-write (CREW) synchronization; and
character encoding-sensitive I/O
LingPipe is a suite of Java libraries for the linguistic analysis of human language.
Feature Overview
LingPipe’s information extraction and data mining tools:
track mentions of entities (e.g. people or proteins);
link entity mentions to database entries;
uncover relations between entities and actions;
classify text passages by language, character encoding, genre, topic, or sentiment;
correct spelling with respect to a text collection;
cluster documents by implicit topic and discover significant trends over time; and
provide part-of-speech tagging and phrase chunking.
Architecture
LingPipe’s architecture is designed to be efficient, scalable, reusable, and robust. Highlights include:
Java API with source code and unit tests;
multi-lingual, multi-domain, multi-genre models;
training with new data for new tasks;
n-best output with statistical confidence estimates;
online training (learn-a-little, tag-a-little);
thread-safe models and decoders for concurrent-read exclusive-write (CREW) synchronization; and
character encoding-sensitive I/O